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Abstract

We prove that every Kähler metric, whose potential is a function of the time-like distance in the flat Kähler–Lorentz space,
is of quasi-constant holomorphic sectional curvatures, satisfying certain conditions. This gives a local classification of the Kähler
manifolds with the above-mentioned metrics. New examples of Sasakian space forms are obtained as real hypersurfaces of a Kähler
space form with special invariant distribution. We introduce three types of even dimensional rotational hypersurfaces in flat spaces
and endow them with locally conformal Kähler structures. We prove that these rotational hypersurfaces carry Kähler metrics
of quasi-constant holomorphic sectional curvatures satisfying some conditions, corresponding to the type of the hypersurfaces.
The meridians of those rotational hypersurfaces, whose Kähler metrics are Bochner–Kähler (especially of constant holomorphic
sectional curvatures), are also described.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In [3] we have given a complete description of the curvature tensor and curvature properties of the Kähler metrics
g = ∂∂̄ f (r2), where r2 is the distance function with respect to the origin in Cn and the real C∞-function f (r2)

satisfies the conditions

f ′(r2) > 0, f ′(r2) + r2 f ′′(r2) > 0.

Bochner–Kähler metrics of the type ∂∂̄ f (r2) have been studied in [6]. The completeness of these metrics has been
discussed in [1].
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We have introduced the notion of a Kähler manifold (M, g, J, D) (dim M = 2n = 6) with J -invariant
B0-distribution D (dim D = 2(n−1)). Any B0-distribution generates a function k > 0 on M . If D⊥ is the distribution,
orthogonal to D, then every holomorphic section E(p), p ∈ M , determines a geometric angle ϑ = 6 (E(p), D⊥(p)).

A Kähler manifold (M, g, J, D) is of quasi-constant holomorphic sectional curvatures if its holomorphic sectional
curvatures only depend on the point p and the angle ϑ .

If (M, g, J, D) is a Kähler manifold of quasi-constant holomorphic sectional curvatures, then the distribution
D(p), p ∈ M is of pointwise constant holomorphic sectional curvatures a(p) and the function a + k2 divides the
class of these manifolds into three subclasses according to

a + k2 > 0, a + k2
= 0, a + k2 < 0.

In [3] we have shown that the flat Kähler manifold Cn carries a canonical B0-distribution and proved the following
characterization of the family of Kähler metrics g = ∂∂̄ f (r2):

Any Kähler metric g = ∂∂̄ f (r2) is of quasi-constant holomorphic sectional curvatures with a + k2 > 0.
Conversely, any Kähler manifold M (dim M = 2n ≥ 6) of quasi-constant holomorphic sectional curvatures

with B0-distribution and a + k2 > 0 is locally equivalent to (Cn, g, J0) with the canonical B0-distribution and
g = ∂∂̄ f (r2).

In this paper we solve the problem of describing the curvature properties of the Kähler metrics generated by
potential functions f (−r2), −r2 being the time-like distance function from the origin in the flat Kähler–Lorentz
space.

Let (Cn, h′, J0) be the flat Kähler–Lorentz space with the canonical complex structure J0 and flat Kähler metric h′

of signature (2(n − 1), 2).
In Proposition 3.5 we prove that if f (−r2), −r2 < 0, is a real C∞-function satisfying the conditions

f ′(−r2) > 0, f ′(−r2) − r2 f ′′(−r2) < 0,

then g = ∂∂̄ f (−r2) is a positive definite Kähler metric in the time-like domain Tn−1
1 = {Z ∈ Cn

: h′(Z, Z) < 0}.
In Section 4 we prove the basic Theorem 4.7, which gives a complete curvature description of the family of Kähler

metrics g = ∂∂̄ f (−r2):
Any Kähler metric g = ∂∂̄ f (−r2) is of quasi-constant holomorphic sectional curvatures with a + k2 < 0.
Conversely, every Kähler manifold M (dim M = 2n ≥ 6) of quasi-constant holomorphic sectional curvatures

with B0-distribution and a + k2 < 0 is locally equivalent to (Tn−1
1 , g, J0) with the canonical B0-distribution and

g = ∂∂̄ f (−r2).
In Section 5 we clear up the geometric meaning of the function a + k2 in a Kähler manifold (M, g, J, D) of

quasi-constant holomorphic sectional curvatures. We show that (M, g, J, D) is a one-parameter family of α-Sasakian
space forms Q2n−1(s), s ∈ I with α =

k
2 and prove in Proposition 5.1 that sign(a + k2) determines the type of the

corresponding Q2n−1(s).
As a consequence of Theorem 4.7 we obtain examples of Kähler space forms in Tn−1

1 with B0-distribution and
a+k2 < 0. In particular the metric g = −2∂∂̄ ln (r2

−1), −r2 < −1, is of constant holomorphic sectional curvature
−1. Considering the unit “disc” (Dn−1

1 (1) : h′(Z, Z) < −1) we show that any hypersphere H2n−1
1 (O, r), r > 1 in

(Dn−1
1 , g, J0) carries a natural structure of an α-Sasakian space form with α =

1
2r and constant ϕ-holomorphic

sectional curvatures c, so that c + 3α2 < 0 (cf. [7]).
In Section 6 we consider three types of rotational hypersurfaces M in Cn

× R with axis of revolution l = R:
Type I: the parallels S2n−1 are the usual hyperspheres in the complex Euclidean space (Cn, g′, J0) and the axis of

revolution R is endowed with positive definite inner product; the meridians are curves in the Euclidean plane.
Type II: the parallels S2n−1 are the usual hyperspheres in the complex Euclidean space (Cn, g′, J0) and the axis R

is endowed with negative definite inner product; the meridians are space-like curves in the hyperbolic plane.
Type III: the parallels H2n

1 are hyperspheres in the flat time-like domain (Tn−1
1 , h′, J0) and the axis R is endowed

with positive definite inner product; the meridians are time-like curves in the hyperbolic plane.
In Section 6.1 we recall that the hypersurfaces of type I carry a natural Kähler structure of quasi-constant

holomorphic sectional curvatures with functions a > 0, a + k2 > 0. In Proposition 6.3 we obtain the meridians
of the rotational hypersurfaces of type I, whose Kähler metric is Bochner–Kähler.
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In Section 6.2 we introduce a Kähler structure on rotational hypersurfaces of type II and prove in Theorem 6.6 that
this Kähler structure is of quasi-constant holomorphic sectional curvatures with functions a < 0, a + k2 > 0. We find
the meridians of the rotational hypersurfaces of type II, whose Kähler metric is Bochner–Kähler (Proposition 6.8) or
of constant holomorphic sectional curvatures (Proposition 6.7).

In Section 6.3 we introduce a Kähler structure on the rotational hypersurfaces of type III and prove in Theorem 6.11
that this Kähler structure is of quasi-constant holomorphic sectional curvatures with functions a < 0, a + k2 < 0.
We find the meridians of those rotational hypersurfaces of type III, whose Kähler metric is Bochner–Kähler
(Proposition 6.13) or is of constant holomorphic sectional curvatures (Proposition 6.12).

2. Preliminaries

In this section we give some basic notions and formulas for Kähler manifolds with B0-distribution [3] we need
further.

Let (M, g, J, D) be a 2n-dimensional Kähler manifold with metric g, complex structure J and J -invariant distribu-
tion D of codimension 2. The Lie algebra of all C∞ vector fields on M will be denoted by XM and Tp M will stand for
the tangent space to M at any point p ∈ M . In the presence of the distribution D the structure of any tangent space is
Tp M = D(p)⊕ D⊥(p), where D⊥(p) is the two-dimensional J -invariant orthogonal complement to the space D(p).
This means that the structural group of the manifolds under consideration is the subgroup U (n − 1) × U (1) of U (n).

In the local treatment of these manifolds D⊥
= span{ξ, Jξ} for some unit vector field ξ . The 1-forms,

corresponding to ξ and Jξ , respectively, are

η(X) = g(ξ, X), η̃(X) = g(Jξ, X) = −η(J X); X ∈ XM.

Then the distribution D is determined by the conditions

D(p) = {X ∈ Tp M | η(X) = η̃(X) = 0}, p ∈ M.

The Kähler form Ω of the structure (g, J ) is given by Ω(X, Y ) = g(J X, Y ), X, Y ∈ XM .
Let ∇ be the Levi-Civita connection of the metric g.
A J -invariant distribution D, (D⊥

= span{ξ, Jξ}) is said to be a B0-distribution [3] if

(i) ∇x0ξ =
k

2
x0, k 6= 0, x0 ∈ D;

(ii) ∇Jξ ξ = −p∗ Jξ ;

(iii) ∇ξ ξ = 0.

The above definition implies immediately the following equalities [3]:

∇Xξ =
k

2
{X − η(X)ξ − η̃(X)Jξ} − p∗η̃(X)Jξ, X ∈ XM; (2.1)

dk = ξ(k) η, p∗
= −

ξ(k) + k2

k
. (2.2)

Any Kähler manifold (M, g, J, D) with J -invariant distribution D carries the tensors

4π(X, Y )Z := g(Y, Z)X − g(X, Z)Y − 2g(J X, Y )J Z + g(JY, Z)J X − g(J X, Z)JY ; (2.3)

Φ1(X, Y )Z :=
1
8
{g(Y, Z)(η(X)ξ + η̃(X)Jξ) − g(X, Z)(η(Y )ξ + η̃(Y )Jξ)

+ g(JY, Z)(η(X)Jξ − η̃(X)ξ) − g(J X, Z)(η(Y )Jξ − η̃(Y )ξ)

− 2g(J X, Y )(η(Z)Jξ − η̃(Z)ξ)};

Φ2(X, Y )Z :=
1
8
{(η(Y )η(Z) + η̃(Y )η̃(Z))X − (η(X)η(Z) + η̃(X)η̃(Z))Y

+ (η(Y )η̃(Z) − η̃(Y )η(Z))J X − (η(X)η̃(Z) − η̃(X)η(Z))JY

− 2(η(X)η̃(Y ) − η̃(X)η(Y ))J Z};

(2.4)
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Φ := Φ1 + Φ2;

Ψ(X, Y )Z := η(Y )η(Z)η̃(X)Jξ − η(X)η(Z)η̃(Y )Jξ + η(X)η̃(Y )η̃(Z)ξ − η(Y )η̃(X)η̃(Z)ξ

= (η ∧ η̃)(X, Y )(η̃(Z)ξ − η(Z)Jξ), (2.5)

X, Y, Z ∈ XM . These tensors are invariant under the action of the structural group U (n − 1) × U (1) [10].
The Riemannian curvature tensor R of the metric g is given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z ,

R(X, Y, Z , U ) = g(R(X, Y )Z , U ); X, Y, Z , U ∈ XM.

In [3] we proved that a Kähler manifold (M, g, J, D) (dim M = 2n ≥ 4) with J -invariant distribution D is of
quasi-constant holomorphic sectional curvatures if and only if

R = aπ + bΦ + cΨ ,

where a, b and c are functions on M , generated by the structure (g, J, ξ).
If (M, g, J, D) (dim M = 2n ≥ 6) is a Kähler manifold of quasi-constant holomorphic sectional curvatures, then

the following statements hold good [3]:

(i) If D is a B0-distribution, then

da =
kb

2
η. (2.6)

(ii) Under the condition b 6= 0, D is a B0-distribution if and only if D is non-involutive.
(iii) If b = 0 and D is non-involutive, then c = 0, i.e. M is a Kähler space form.

Finally we recall some basic facts related to α-Sasakian manifolds.
Let Q2n−1(g, ϕ, ξ̃ , η̃) (n ≥ 3) be an almost contact Riemannian manifold, i.e.

g(ϕx, ϕy) = g(x, y) − η̃(x)η̃(y), x, y ∈ XQ2n−1,

ϕ2x = −x + η̃(x)ξ̃ , x ∈ XQ2n−1,

ϕ ξ = 0.

(2.7)

If the structure (g, ϕ, ξ̃ , η̃) of an almost contact Riemannian manifold Q2n−1 satisfies the conditions

Dx ξ̃ = α ϕx, x ∈ XQ2n−1,

(Dxϕ)(y) = α (η̃(y)x − g(x, y)ξ̃ ), x, y ∈ XQ2n−1,

whereD is the Levi-Civita connection of the metric g and α = const, then Q2n−1 is called an α-Sasakian manifold [4].
If the constant α = 1, then Q2n−1 is a Sasakian manifold in the usual sense.
α-Sasakian space forms are characterized as follows:

Proposition 2.1 ([5,4]). An α-Sasakian manifold (Q2n−1, g, ϕ, ξ̃ , η̃) (dim Q2n−1
≥ 5) is of constant ϕ-holomorphic

sectional curvatures c if and only if

K (x, y, z, u) =
c + 3α2

4
[g(y, z)g(x, u) − g(x, z)g(y, u)]

+
c − α2

4
[g(ϕy, z)g(ϕx, u) − g(ϕx, z)g(ϕy, u) − 2g(ϕx, y)g(ϕz, u)

− g(y, z)η̃(x)η̃(u) − g(x, u)η̃(y)η̃(z)

+ g(x, z)η̃(y)η̃(u) + g(y, u)η̃(x)η̃(z)], x, y, z, u ∈ XQ2n−1.

We note that there are three types of α-Sasakian space forms with respect to sign(c + 3α2) [7]:

Type I: c + 3α2 > 0;

Type II: c + 3α2
= 0;

Type III: c + 3α2 < 0.
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3. Kähler–Lorentz manifolds with B0-distributions

Let (M, h′, J ) (dim M = 2n) be a complex manifold with complex structure J and indefinite Hermitian metric
h′ of signature (2(n − 1), 2) and ∇

′ be the Levi-Civita connection of h′. If ∇
′ J = 0, then (M, h′, J ) is said to be a

Kähler–Lorentz manifold.
We consider Kähler–Lorentz manifolds (M, h′, J ) with a space-like J -invariant distribution D of dim D =

2(n − 1). Then the orthogonal J -invariant two-dimensional distribution D⊥ is time-like.
Since our considerations are local, we can assume the existence of a time-like unit vector field ξ ′ on M such that

D⊥(p) = span{ξ ′, Jξ ′
} at any point p ∈ M . We denote by η′ and η̃′ the unit 1-forms corresponding to ξ ′ and Jξ ′,

respectively, i.e.

η′(X) = h′(ξ ′, X), η̃′(X) = h′(Jξ ′, X) = −η′(J X), X ∈ XM;

‖η′
‖

2
= ‖η̃′

‖
2

= η′(ξ ′) = η̃′(Jξ ′) = −1.

Then the space-like distribution D is determined by the conditions

D(p) = {X ∈ Tp M | η′(X) = η̃′(X) = 0}, p ∈ M.

The Riemannian curvature tensor R′ of ∇
′ is determined as in the previous section. We note that the Ricci tensor

ρ′ and the scalar curvature τ ′ of the metric h′ are given by

ρ′(Y, Z) =

2n∑
i=1

h′(ei , ei )R′(ei , Y, Z , ei ), Y, Z ∈ XM;

τ ′
=

2n∑
i=1

h′(ei , ei )ρ
′(ei , ei ),

where {ei }, i = 1, . . . , 2n is an orthonormal basis for Tp M, p ∈ M .
We also note that the tensor h′⊥

= −(η′
⊗ η′

+ η̃′
⊗ η̃′) does not depend on the basis {ξ ′, Jξ ′

} of D⊥. This tensor
is negative definite and it is the restriction of the metric h′ onto the distribution D⊥.

The Kähler form Θ of the structure (h′, J ) is given by Θ(X, Y ) = h′(J X, Y ), X, Y ∈ XM .
All directions in D⊥

= span{ξ ′, Jξ ′
} have one and the same Ricci curvature, which is denoted by σ ′, i.e.

σ ′
= −ρ′(ξ ′, ξ ′) = −ρ′(Jξ ′, Jξ ′). (3.1)

The Riemannian sectional curvature of the distribution D⊥ is denoted by ~ ′, i.e.

~ ′
= R′(ξ ′, Jξ ′, Jξ ′, ξ ′). (3.2)

Thus the structure (h′, J, D) gives rise to the functions ~ ′, σ ′ and τ ′.
Any vector field X ∈ XM is decomposable in a unique way as follows:

X = x0 − η̃′(X)Jξ ′
− η′(X)ξ ′,

where x0 is the projection of X into XD.
As a rule, we use the following denotations for vector fields (vectors):

X, Y, Z ∈ XM (Tp M); x0, y0, z0 ∈ XD (D(p)).

If D⊥
= span{ξ ′, Jξ ′

}, then the relative divergences div0ξ
′ and div0 Jξ ′ (the relative codifferentials δ0η

′ and δ0η̃
′)

of the vector fields ξ ′ and Jξ ′ (of the 1-forms η′ and η̃′) with respect to the space-like distribution D are introduced
as in the definite case:

div0ξ
′
= −δ0η

′
=

2(n−1)∑
i=1

(∇ ′
ei
η′)ei , div0 Jξ ′

= −δ0η̃
′
=

2(n−1)∑
i=1

(∇ ′
ei
η̃′)ei ,

where {e1, . . . , e2(n−1)} is an orthonormal basis of D(p), p ∈ M .
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The restriction of the metric h′ onto the distribution ∆

∆(p) := {X ∈ Tp M | η′(X) = 0}, p ∈ M,

perpendicular to ξ ′, is of signature (2(n − 1), 1).
The notion of a space-like B0-distribution in a Kähler–Lorentz manifold is introduced similarly to the definite case:

Definition 3.1. Let (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with J -invariant space-like
distribution D (D⊥

= span{ξ ′, Jξ ′
}). The distribution D is said to be a B0-distribution if:

(i) ∇
′
x0

ξ ′
= −

k′

2
x0, k′

6= 0, x0 ∈ D;

(ii) ∇
′

Jξ ′ξ
′
= p∗′ Jξ ′

;

(iii) ∇
′

ξ ′ξ
′
= 0,

(3.3)

where k′ and p∗′ are functions on M .

Next we prove some properties of Kähler–Lorentz manifolds with B0-distribution.

Lemma 3.2. Let (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with B0-distribution D (D⊥
=

span{ξ ′, Jξ ′
}). Then

dk′
= −ξ ′(k′)η′, p∗′

=
ξ ′(k′) − k′2

k′
.

Proof. The conditions (3.3) imply

∇
′

Xξ ′
= −

1
2

k′
{X + η̃′(X)Jξ ′

+ η′(X)ξ ′
} − p∗′

η̃′(X)Jξ ′. (3.4)

By using (3.4) we find dη̃′ and after an exterior differentiation we obtain the assertion of the lemma. �

Lemma 3.3. Let (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with B0-distribution D (D⊥
=

span{ξ ′, Jξ ′
}). Then

R′(X, Y )ξ ′
=

1
2

(
ξ ′(k′) −

1
2

k′2
)

{η′(X)Y − η′(Y )X + 2h′(J X, Y )Jξ ′
− η̃′(X)JY + η̃′(Y )J X}

−
1
k′

ξ ′

(
ξ ′(k′) −

1
2

k′2
)

(η′
∧ η̃′)(X, Y )Jξ ′

; (3.5)

~ ′
= −

1
k′

ξ ′

(
ξ ′(k′) −

1
2

k′2
)

− 2
(

ξ ′(k′) −
1
2

k′2
)

; (3.6)

σ ′
= −

1
k′

ξ ′

(
ξ ′(k′) −

1
2

k′2
)

− (n + 1)

(
ξ ′(k′) −

1
2

k′2
)

. (3.7)

Proof. By using (3.4), we find immediately (3.5) and (3.6). Taking a trace in (3.5), we have

ρ′(Y, ξ ′) = −

[
1
k′

ξ ′

(
ξ ′(k′) −

1
2

k′2
)

+ (n + 1)

(
ξ ′(k′) −

1
2

k′2
)]

η′(Y ), (3.8)

which implies (3.7). �

The equality (3.8) shows that every unit vector in D⊥(p) is an eigenvector of the Ricci operator ρ′ with one and
the same eigenvalue σ ′(p).

If x0 is a unit vector in D(p), then the Riemannian sectional curvature of span{x0, ξ
′
} may only depend on the

point p ∈ M :

−R′(x0, ξ
′, ξ ′, x0) =

σ ′
− ~ ′

2(n − 1)
. (3.9)
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The first step in the study of Kähler–Lorentz manifolds with B0-distributions is to describe the flat case.
Let (M, h′, J, D) (dim M ≥ 6) be a flat Kähler–Lorentz manifold with B0-distribution D(D⊥

= span{ξ ′, Jξ ′
}).

Then Lemma 3.3 implies that

ξ ′(k′) =
1
2

k′2. (3.10)

Taking into account Lemma 3.2 it follows that

p∗′
= −

1
2

k′. (3.11)

Then (3.4) in view of (3.10) and (3.11) implies that

∇
′
xξ

′
= −

1
2

k′ x, h′(x, ξ ′) = 0. (3.12)

Hence the integral submanifolds Q2(n−1)
1 of the distribution ∆, perpendicular to ξ ′, are totally umbilic submanifolds

of M with time-like normals ξ ′.
Let (Cn

= {Z = (z1, . . . , zn−1
; zn)}, J ) be the standard n-dimensional complex vector space with complex

structure J and h′ be the Kähler metric of signature (2(n − 1), 2), defined by

h′(Z, Z) = |z1
|
2
+ · · · + |zn−1

|
2
− |zn

|
2.

We call h′ the canonical flat Kähler–Lorentz metric and (Cn, h′, J ) = (R2(n−1)
2 , h′, J ) the canonical flat

Kähler–Lorentz manifold.
Next we describe the B0-distributions in (Cn, h′, J ).
Let D (D⊥

= span{ξ ′, Jξ ′
}) be a B0-distribution in (Cn, h′, J ). According to Definition 3.1 ξ ′ is a time-like

geodesic vector field with respect to the flat Levi-Civita connection ∇
′ of h′. Then the integral curves of ξ ′ are

straight lines. Since h′ is flat, then the integral submanifolds Q2(n−1)
1 of the distribution ∆, perpendicular to ξ ′,

are totally umbilical with time-like normals ξ ′. Applying the standard theorem for totally umbilical submanifolds
(with time-like normals) of the manifold (Cn, h′, J ), we obtain that Q2(n−1)

1 is locally a part of a hypersphere

H2(n−1)
1 (Z0, r) : h′(Z − Z0, Z − Z0) = −r2, r > 0. All these hyperspheres are orthogonal to the integral curves of

ξ ′, i.e. Q2(n−1)
1 are the concentric hyperspheres

H2(n−1)
1 (Z0, r) : h′(Z − Z0, Z − Z0) = −r2, Z0 = const.

Choosing Z0 at the origin O of Cn , we obtain
Canonical example of a flat Kähler–Lorentz manifold with B0-distribution:

(Tn−1
1 , h′, J, D),

where Tn−1
1 is the time-like domain in Cn

Tn−1
1 = {Z ∈ Cn

| h′(Z, Z) < 0}

and

ξ ′
=

Z
√

−h′(Z, Z)
, Z ∈ Tn−1

1 .

Now let (M, h′, J, D) (dim M = 2n ≥ 6) be a flat Kähler–Lorentz manifold with B0-distribution D (D⊥
=

span{ξ ′, Jξ ′
}). Since the Levi-Civita connection ∇

′ of h′ is flat and ∇
′ J = 0, then there exists a local holomorphic

isometry φ of (M, h′, J ) onto (Cn, h′, J ). Since φ transforms the B0-distribution D into a B0-distribution, then we
have

Proposition 3.4. Any flat Kähler–Lorentz manifold with B0-distribution is locally equivalent to the canonical example
(Tn−1

1 , h′, J, D).
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In order to make computations in local holomorphic coordinates we need some formulas concerning the structures
on Tn−1

1 .

Let in Cn
= {Z = (z1, . . . , zn)} (n = 2) ∂α :=

∂
∂zα , ∂ᾱ :=

∂
∂zᾱ =

∂
∂zα , α = 1, . . . , n. Further, the indices α, β, . . .

will run over 1, . . . , n.
The canonical flat Kähler–Lorentz metric h′ has the following local components:

h′

αβ̄
=


1
2

α = β = 1, . . . , n − 1;

−
1
2

α = β = n;

0 α 6= β.

Then

h′(Z, Z) = |z1
|
2
+ · · · + |zn−1

|
2
− |zn

|
2

= 2h′

αβ̄
zαzβ̄ ,

where the summation convention is assumed.
The distance function −r2

= h′(Z, Z) in the domain Tn−1
1 is given by

−r2
= 2h′

αβ̄
zαzβ̄ < 0, r > 0. (3.13)

The vector field ξ ′
=

1
r Z at the point p ∈ Tn−1

1 with position vector Z has local components

η′α
=

1
r

δα
σ zσ ,

where the δσ
α are Kronecker deltas.

Taking into account (3.13), we find the local components of the corresponding 1-form η′:

η′
α = η′σ̄ h′

ασ̄ =
1
r

h′

αβ̄
zβ̄

= −rα. (3.14)

Hence

η′
= −dr, ξ ′

=
d
dr

;

η′(ξ ′) = h′(ξ ′, ξ ′) =
1

r2 h′(Z, Z) = −1.

(3.15)

By differentiating (3.13) we obtain

h′

αβ̄
=

1
2

∂α∂β̄(−r2).

On the other hand, differentiating (3.14), we have

∂β̄η′
α = ∇

′

β̄
η′

α =
1
r

(h′

αβ̄
+ η′

αη′

β̄
).

Proposition 3.5. Let f (t), t < 0 be a real C∞-function satisfying the inequalities:

f ′(t) > 0, f ′(t) + t f ′′(t) < 0.

Then

gαβ̄ = ∂α∂β̄ f (−r2)

are the local components of a Kähler metric g.
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Proof. By using (3.13) and (3.15), we calculate

∂β̄ f (−r2) = 2 f ′h′

αβ̄
zα.

Differentiating the last equality, we find

gαβ̄ = ∂α∂β̄ f (−r2) = 2 f ′h′

αβ̄
+ 4r2 f ′′η′

αη′

β̄
.

Hence,

g = 2 f ′h′
+ 2r2 f ′′(η′

⊗ η′
+ η̃′

⊗ η̃′). (3.16)

Now, let p ∈ Tn−1
1 and Tp(Tn−1

1 ) = (D(p) ⊕ D⊥(p)). The equality (3.16) implies that

g(x0, x0) = 2 f ′h′(x0, x0), x0 ∈ D(p); (3.17)

g(ξ ′, ξ ′) = g(Jξ ′, Jξ ′) = −2( f ′
+ (−r2) f ′′). (3.18)

The first condition of the proposition and (3.17) imply that the restriction of g onto D is positive definite. The second
condition of the proposition and (3.18) give that the restriction of g onto D⊥ is also positive definite. Hence g is a
positive definite metric. Since g = ∂∂̄ f (−r2), then g is a Kähler metric. �

4. Kähler manifolds of quasi-constant holomorphic sectional curvatures with a + k2 < 0

In this section we prove the main theorem, which clarifies the connection between the Kähler metrics introduced
in Section 3 and a class of Kähler manifolds of quasi-constant holomorphic sectional curvatures.

Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold with B0-distribution D (D⊥
= span{ξ, Jξ}) with

functions k, p∗, given by (2.2).
If u, v are proper C∞-functions of the distribution ∆ (cf. [3]), i.e. du = ξ(u) η, dv = ξ(v) η, we consider the metric

h′
= e2u

(
g − (e2v

+ 1)(η ⊗ η + η̃ ⊗ η̃)
)

, (4.1)

which is positive definite on D and negative definite on D⊥.

Lemma 4.1. Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold with B0-distribution D (D⊥
= span{ξ, Jξ}).

Then the metric h′, given by (4.1), is Kähler–Lorentz if and only if

ξ(u) = −
k(e2v

+ 1)

2
. (4.2)

Proof. From (4.1) we find the Kähler form Θ of the metric h′:

Θ = e2u
(
Ω − (e2v

+ 1)η ∧ η̃
)

.

The last equality, (2.1) and (2.2), imply that

dΘ = e2u
(

2ξ(u) + k(e2v
+ 1)

)
η ∧ Ω ,

which implies the assertion of the lemma. �

We set

ξ ′
= e−(u+v) ξ, η′

= −eu+v η. (4.3)

Then η′ is the 1-form corresponding to ξ ′ with respect to h′ and η′(ξ ′) = −1.

Lemma 4.2. Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold with B0-distribution D (D⊥
= span{ξ, Jξ}).

If

h′
= e2u

(
g − (e2v

+ 1)(η ⊗ η + η̃ ⊗ η̃)
)

,
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where

dv = ξ(v) η, du = −
k(e2v

+ 1)

2
η

and

ξ ′
= e−(u+v) ξ, η′

= −eu+v η,

then (M, h′, J, D) (D⊥
= span{ξ ′, Jξ ′

}) is a Kähler–Lorentz manifold with space-like B0-distribution D.

Proof. Let ∇
′, ∇ be the Levi-Civita connections of the metrics h′, g, respectively. Then

∇
′

X Y = ∇X Y + ξ(u){η(X)Y + η(Y )X + η̃(X)JY + η̃(Y )J X} + ξ(v − u){[η(X)η(Y ) − η̃(X)η̃(Y )]ξ

+ [η(X)η̃(Y ) + η̃(X)η(Y )]Jξ}, X, Y ∈ XM. (4.4)

From (4.4) it follows that

∇
′

Xξ ′
= e−(u+v)

(
ξ(u) +

k

2

) [
X − η(X)ξ − η̃(X)Jξ

]
+ e−(u+v)

(
ξ(u + v) − p∗

)
η̃(X)Jξ, X ∈ XM.

The above equality can be written in the form

∇
′

Xξ ′
= −

k′

2
[X + η′(X)ξ ′

+ η̃′(X)Jξ ′
] − p∗′

η̃′(X)Jξ ′, X ∈ XM, (4.5)

where

k′
= −2e−(u+v)

(
ξ(u) +

k

2

)
,

p∗′
= e−(u+v)(ξ(u + v) − p∗),

(4.6)

i.e. D is a space-like B0-distribution with functions k′ and p∗′. �

Because of (4.2)

ξ(u) +
k

2
= −

1
2

e2vk.

Then (4.6) gives the following relation between k′ and k:

k′
= ev−u k. (4.7)

Let the tensors π ′,Φ′

1,Φ
′

2,Φ
′
= Φ′

1+Φ′

2 and Ψ ′ of type (1,3) with respect to the structure (h′, ξ ′, η′) be determined
as in (2.3)–(2.5). If g and h′ are related as in Lemma 4.2, then

π ′
+ 2Φ′

+ Ψ ′
= e2u(π − 2Φ + Ψ),

Φ′

1 +
1
2
Ψ ′

= −e2u
(
Φ1 −

1
2
Ψ
)

,

Φ′

2 +
1
2
Ψ ′

= e2(u+v)

(
Φ2 −

1
2
Ψ
)

,

Ψ ′
= −e2(u+v)Ψ .

(4.8)

Proposition 4.3. Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold of quasi-constant holomorphic sectional
curvatures with B0-distribution D (D⊥

= span{ξ, Jξ}) and

a + k2 < 0.

If the structure (h′, ξ ′, η′) is determined as in Lemma 4.2 by the proper function

e2v
= −

a + k2

k2 ,

then h′ is a flat Kähler–Lorentz metric.
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Proof. By direct computations from (4.4) in view of (2.3), (2.4) and (2.5) we find

R′
− R = −2kξ(u)(π − 2Φ + Ψ) − 4kξ(v)

(
Φ1 −

1
2
Ψ
)

− 4(ξ2(u) − p∗ξ(u))

(
Φ2 −

1
2
Ψ
)

− (ξ2(u + v) − p∗ξ(u + v))Ψ . (4.9)

Taking into account that R = aπ + bΦ + cΨ and (4.8), we obtain from (4.9) the curvature tensor R′ of h′ in the form

R′
= A(π ′

+ 2Φ′
+ Ψ ′) + B1

(
Φ′

1 +
1
2
Ψ ′

)
+ B2

(
Φ′

2 +
1
2
Ψ ′

)
+ CΨ ′, (4.10)

where

e2u A = a − 2kξ(u), e2(u+v)C = −(a + b + c) + ξ2(u + v) − p∗ξ(u + v),

e2u B1 = −(2a + b) + 4kξ(v), e2(u+v) B2 = 2a + b − 4(ξ2(u) − p∗ξ(u)).
(4.11)

Taking into account (4.7), (4.10) and (4.2), we find

e2u(A − k′2) = a + k2. (4.12)

Then (4.12) and (4.7) imply

e2u A = e2vk2
+ a + k2.

Under the conditions of the proposition we obtain A = 0 and ξ(u) =
a
2k .

Differentiating the equality e2v
= −

a+k2

k2 , because of (2.6), we obtain

ξ(k) +
1
2

k2
+ kξ(v) = 0. (4.13)

On the other hand, ξ ′
= e−(u+v) ξ and (4.7) imply

ξ(k) +
1
2

k2
+ kξ(v) = e2u

(
ξ ′(k′) −

1
2

k′2
)

.

Thus, from the equality (4.13), we get

ξ ′(k′) =
1
2

k′2.

Now from (3.6) and (3.7) it follows that ~ ′
= σ ′

= 0.
Replacing into (4.10) the quadruples ξ, x0, x0, ξ and x0, ξ, ξ, x0, where h′(x0, x0) = 1, in view of (3.9), we obtain

0 =
σ ′

− ~ ′

2(n − 1)
=

1
8

B1 =
1
8

B2.

Replacing into (4.10) the quadruple ξ, Jξ, Jξ, ξ , we get

0 = ~ ′
= C,

i.e. R′
= 0. �

Let now (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with space-like B0-distribution
D (D⊥

= span{ξ ′, Jξ ′
}) with functions k′ and p∗′, determined in Lemma 3.2.

If u, v are proper C∞-functions of the distribution ∆, i.e. du = −ξ ′(u)η′, dv = −ξ ′(v)η′, we consider the metric

g = e−2u(h′
+ (e−2v

+ 1)(η′
⊗ η′

+ η̃′
⊗ η̃′)). (4.14)

Taking into account (3.4), analogously to Lemma 4.1, we have
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Lemma 4.4. Let (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with space-like B0-distribution
D (D⊥

= span{ξ ′, Jξ ′
}). Then the metric g, given by (4.14), is Kähler if and only if

ξ ′(u) = −
k′(e−2v

+ 1)

2
.

Further, we set ξ = eu+vξ ′, η = −e−(u+v)η′. Analogously to (4.7) we have

k = eu−vk′. (4.15)

Lemma 4.5. Let (M, h′, J, D) (dim M = 2n ≥ 6) be a Kähler–Lorentz manifold with space-like B0-distribution
D (D⊥

= span{ξ ′, Jξ ′
}). If

g = e−2u
(

h′
+ (e−2v

+ 1)(η′
⊗ η′

+ η̃′
⊗ η̃′)

)
,

where

dv = −ξ ′(v) η′, du =
k′(e−2v

+ 1)

2
η′

and

ξ = eu+v ξ ′, η = −e−(u+v) η′,

then (M, g, J, D) (D⊥
= span{ξ, Jξ}) is a Kähler manifold with B0-distribution D.

Proposition 4.6. Let (Tn−1
1 , h′, J, D) (dim Tn−1

1 = 2n ≥ 6) be the canonical example of a flat Kähler–Lorentz
manifold. If the structure (g, ξ, η) is determined as in Lemma 4.5, then g is a Kähler metric of quasi-constant
holomorphic sectional curvatures and a + k2 < 0.

Proof. Taking into account (4.14) we find the relation (4.4) between the Levi-Civita connections ∇
′ and ∇ of h′ and g,

respectively. Then the corresponding relation between the curvature tensors R′ and R is given by (4.9). Since R′
= 0,

then (4.9) gives the tensor R in the form

R = A∗(π − 2Φ + Ψ) + B∗

1

(
Φ1 −

1
2
Ψ
)

+ B∗

2

(
Φ2 −

1
2
Ψ
)

+ C∗Ψ .

Replacing the quadruples ξ, x0, x0, ξ ; x0, ξ, ξ, x0, where g(x0, x0) = 1, in the last equality, we get

1
8

B∗

1 = R(ξ, x0, x0, ξ) = R(x0, ξ, ξ, x0) =
1
8

B∗

2 .

Hence the curvature tensor R has the form R = aπ + bΦ + cΨ , i.e. the metric g is of quasi-constant holomorphic
sectional curvatures.

To prove a + k2 < 0, we consider (4.9). Since a = 2kξ(u), ξ = eu+vξ ′, in view of (4.15) and Lemma 4.4, we find

a = −e2uk′2(e−2v
+ 1) = −k2

− e2uk′2.

Hence a + k2 < 0. �

Theorem 4.7. Any Kähler metric g = ∂∂̄ f (−r2), −r2 being the time-like distance function in Tn−1
1 (n ≥ 3), is of

quasi-constant holomorphic sectional curvatures and function a + k2 < 0.
Conversely, every Kähler manifold (M, g, J, D) (dim M = 2n ≥ 6) of quasi-constant holomorphic sectional

curvatures with B0-distribution satisfying the condition a + k2 < 0 is locally equivalent to (Tn−1
1 , g, J, D) with the

canonical B0-distribution and g = ∂∂̄ f (−r2).

Proof. Let the Kähler metric g be given as in (3.16). Putting

e−2u
= 2 f ′, e−2v

+ 1 =
r2 f ′′

f ′
,
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we calculate

ξ ′(u) =
du

dr
=

r f ′′

f ′
=

1
r
(e−2v

+ 1) = −
k′(e−2v

+ 1)

2
.

Then we can apply Proposition 4.6 and conclude that the structure (g, J, ξ, η) is of quasi-constant holomorphic
sectional curvatures with B0-distribution and function a + k2 < 0.

For the inverse, let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold with B0-distribution and function
a + k2 < 0. We construct the metric h′ as in Lemma 4.2 by the proper function e2v

= −
a+k2

k2 . Applying
Proposition 4.6 we obtain that the Kähler metric h′ is flat and the given manifold is locally equivalent to the canonical
flat Kähler–Lorentz manifold (Tn−1

1 , h′, J, D).
Further we write the equality (4.1) in the form

g = e−2u
(

h′
+ (e−2v

+ 1)(η′
⊗ η′

+ η̃′
⊗ η̃′)

)
(4.16)

and put

f (−r2) =
1
2

∫
e−2ud(−r2). (4.17)

From (4.17) we have e−2u
= 2 f ′. Using Lemma 4.5 we find ξ ′(u) = −

k′(e−2v
+1)

2 and ξ ′
=

d
dr , k′

= −
2
r . Then

e−2v
+ 1 =

r2 f ′′

f ′ and (4.16) becomes

g = 2 f ′

(
h′

+
r2 f ′′

f ′
(η′

⊗ η′
+ η̃′

⊗ η̃′)

)
.

Hence g = ∂∂̄ f (−r2) with potential function (4.17). �

As an application of Theorem 4.7 we shall find the Kähler metrics of constant holomorphic sectional curvatures,
defined in the manifold (Tn−1

1 , h′, J, D) by the condition g = ∂∂̄ f (−r2).
Let g be a metric given by (4.16). Then (4.9) gives the relation between the curvature tensor R of g and the tensor

R′
= 0 of h′ in Tn−1

1 . Since the coefficients A, B1, B2, C in (4.10) are all zero, then (4.11) implies

a = 2kξ(u);

2a + b = 4kξ(v) = 4[ξ2(u) − p∗ξ(u)];

a + b + c = ξ2(u + v) − p∗ξ(u + v).

(4.18)

Since D is a B0-distribution, then g is a Kähler metric of constant holomorphic sectional curvatures if and only if
b = 0. Because of ξ = eu+vξ ′

= eu+v d
dr and (4.18), the condition b = 0 is equivalent to the relation

du

dr
=

dv

dr
. (4.19)

Further, taking into account (4.18) and (2.2), we obtain successively

kξ(u) = ξ2(u) − p∗ξ(u) = ξ2(u) +
ξ(k) + k2

k2 ξ(u),

which in view of (4.19) and the relation k = eu−vk′
= −

2eu−v

r implies that

d2u

dr2 + 2
(

du

dr

)2

−
1
r

du

dr
= 0. (4.20)

Solving (4.20), we find

e2u
= e2u0 |r2

+ a0|, a0 = const, u0 = const. (4.21)
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Since a + k2 < 0, then a < 0 and the equality a = 2kξ(u) = −
4
r e2u du

dr = −
4e2u

r2+a0
implies that r2

+ a0 > 0.

On the other hand, using the relation (4.2), we find e−2v
= −

a0
r2+a0

> 0 and a0 < 0. Putting a0 = −r2
0 , we have

e−2v
=

r2
0

r2 − r2
0

. (4.22)

Finally, the equality a = 2kξ(u) gives that e−2u0 = −
4
a .

Now, from (4.21) and (4.22) we obtain
Examples of Kähler space forms with B0-distribution and a + k2 < 0:
All Kähler metrics g of constant holomorphic sectional curvatures a < 0, given in Tn−1

1 by (4.16), are

g = −
4

a(r2 − r2
0 )

(
h′

+
r2

r2 − r2
0

(η′
⊗ η′

+ η̃′
⊗ η̃′)

)
, r0 = const > 0, r > r0. (4.23)

The potential function of the above metrics up to a constant is

f (−r2) =
2
a

ln(r2
− r2

0 ), r0 = const > 0, r > r0.

Hence

g =
2
a

∂∂̄ ln(r2
− r2

0 ), r0 > 0, r > r0.

One of these metrics is most remarkable:

g =
4

r2 − 1

(
h′

+
r2

r2 − 1
(η′

⊗ η′
+ η̃′

⊗ η̃′)

)
, r > 1. (4.24)

This metric is defined in the hyperbolic unit “disc” Dn−1
1 (1) : h′(Z, Z) < −1 and is of constant holomorphic sectional

curvatures a = −1.

5. The geometric meaning of the function a + k2 in Kähler manifolds of quasi-constant holomorphic sectional
curvatures

Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold of quasi-constant holomorphic sectional curvatures
with B0-distribution D(p) (D⊥(p) = span{ξ, Jξ}), p ∈ M .

In this section we study the geometric structure of the integral submanifolds of the distribution

∆(p) = {X ∈ Tp M | η(X) = 0}, p ∈ M.

Because of (2.1), we have

dη = 0; dη̃ = kΩ +
1
k
η ∧ η̃. (5.1)

Let Q2n−1 be an arbitrary integral submanifold of the distribution ∆ and ξ be the unit vector field, normal to
Q2n−1. Applying the Weingarten and Gauss equations to the submanifolds Q2n−1, we have

∇xξ =
k

2
x +

1
k

(
ξ(k) +

k2

2

)
η̃(x)Jξ, x ∈ X∆; (5.2)

∇x y = Dx y + h(x, y)ξ, x, y ∈ X∆, (5.3)

where D is the induced Levi-Civita connection and h is the second fundamental tensor on Q2n−1.
According to (2.2), k = const on Q2n−1. From (5.2) it follows that

h = −
k

2
g −

1
k

(
ξ(k) +

k2

2

)
η̃ ⊗ η̃.
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The standard almost contact Riemannian structures (g, ϕ, ξ̃ , η̃) induced on the manifold Q2n−1 are [8,9]:

ξ̃ := Jξ ; η̃ = g(x, ξ̃ ),

ϕx := J x + η̃(x)ξ, x ∈ X∆.
(5.4)

Taking into account (5.2), in view of (2.7), we find

Dx ξ̃ =
k

2
ϕx, x ∈ X∆, (5.5)

(Dxϕ)(y) =
k

2

(
η̃(y)x − g(x, y)ξ̃

)
, x, y ∈ X∆. (5.6)

According to (5.5) and (5.6), any integral submanifold Q2n−1 of the distribution ∆ is an α-Sasakian manifold with
α =

k
2 .

More precisely we have

Proposition 5.1. Let (M, g, J, D) (dim M = 2n ≥ 6) be a Kähler manifold of quasi-constant holomorphic sectional
curvatures with B0-distribution D (D⊥

= span{ξ, Jξ}).

Then any integral submanifold Q2n−1 of the distribution ∆ is a k
2 -Sasakian space form of type

{
I,
II,
III,

if and only if{
a + k2 > 0,

a + k2
= 0,

a + k2 < 0,

respectively.

Proof. From (5.3), (5.2), (5.4) and (5.6) we find the relation between the curvature tensors R and K of M2n and
Q2n−1, respectively:

R(x, y, z, u) = K (x, y, z, u) −
1
4

k2
[g(y, z)g(x, u) − g(x, z)g(y, u)]

−
1
2

(
ξ(k) +

1
2

k2
)

[g(y, z)η̃(x)η̃(u) + g(x, u)η̃(y)η̃(z)

− g(x, z)η̃(y)η̃(u) − g(y, u)η̃(x)η̃(z)], x, y, z, u ∈ X∆. (5.7)

Since (M, g, J, D) is of quasi-constant holomorphic sectional curvatures, then

R = aπ + bΦ + cΨ . (5.8)

Taking into account (5.8), the equality (5.7) becomes

K (x, y, z, u) =
a + k2

4
[g(y, z)g(x, u) − g(x, z)g(y, u)]

+
a

4
[g(ϕy, z)g(ϕx, u) − g(ϕx, z)g(ϕy, u) − 2g(ϕx, y)g(ϕz, u)

− g(y, z)η̃(x)η̃(u) − g(x, u)η̃(y)η̃(z)
+ g(x, z)η̃(y)η̃(u) + g(y, u)η̃(x)η̃(z)], x, y, z, u ∈ X∆. (5.9)

Comparing (5.9) with the equality from Proposition 2.1 we obtain

c + 3α2
= a + k2, c − α2

= a. (5.10)

Hence any integral submanifold Q2n−1 of ∆ is an α-Sasakian space form with

α =
k

2
, c = a +

k2

4
.

Now the relation (5.10) gives the assertion. �

The above statement allows us to obtain examples of α-Sasakian (Sasakian) manifolds of constant ϕ-holomorphic
sectional curvatures c satisfying the condition c + 3α2 < 0 (c + 3 < 0) as hypersurfaces of the Kähler space form
(Tn−1

1 , g, J, D), with g given by (4.24).
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Let (Tn−1
1 , h′, J, D) be the canonical example of a flat Kähler–Lorentz manifold with B0-distribution D and g be

the Kähler metric of constant holomorphic sectional curvatures −1, given by (4.24). We denote by H2(n−1)
1 (O, r) any

hypersphere in Tn−1
1 , centered at the origin O and with radius r > 1, given by

H2(n−1)
1 (O, r) = {Z ∈ Tn−1

1 | h′(Z, Z) = −r2
}.

Then an easy verification shows that H2(n−1)
1 (O, r) with the induced from (Tn−1

1 , g, J, D) structure (g, ϕ, ξ̃ , η̃) is an
α-Sasakian manifold with constant ϕ-holomorphic sectional curvatures c such that

α =
1
2r

, c + 3α2
= −

r2
− 1

r2 .

Further we give a direct construction of examples of Sasakian structures with prescribed ϕ-holomorphic sectional
curvatures c of type c + 3 < 0 using as a base the hypersphere H2(n−1)

1 (O, r = 1) = H2(n−1)
1 (1).

Let (h′, ϕ, ξ̃ , η̃) be the induced from (Tn−1
1 , h′, J, D) onto H2(n−1)

1 (1)(−1)-Sasakian structure with h′(ξ̃ , ξ̃ ) = −1.
We introduce the following family of Riemannian metrics

g = q2(h′
+ (1 + q2)η̃ ⊗ η̃), q = const > 0 (5.11)

on H2(n−1)
1 (1). Any of these metrics generates the corresponding unit vector field ξ̄ and 1-form η̄ determined by

ξ̄ =
1

q2 ξ̃ , η̄ = −q2η̃.

In a straightforward way we obtain that (H2(n−1)
1 (1), g, ϕ, ξ̄ , η̄) is a Sasakian manifold. Further, by direct

computations we find that the Sasakian structure (g, ϕ, ξ̄ , η̄) is of constant ϕ-holomorphic sectional curvatures c
satisfying the relation

c + 3 = −
4

q2 .

Thus we obtained
Examples of Sasakian space forms with prescribed ϕ-holomorphic sectional curvatures c satisfying the condition

c + 3 < 0:

(H2(n−1)
1 (1), g, ϕ, ξ̄ , η̄): ξ̄ = −

c + 3
4

ξ̃ , η̄ =
4

c + 3
η̃, g = −

4
c + 3

(
h′

+
c − 1
c + 3

η̃ ⊗ η̃

)
.

6. Kähler structures on rotational hypersurfaces

In this section we consider three types of rotational hypersurfaces in spaces with definite or indefinite flat metrics,
which will be endowed with Kähler structures of quasi-constant holomorphic sectional curvatures.

In Sections
{

6.1,

6.2,

6.3
we show that any rotational hypersurface of type

{
I,
II,
III

carries a Kähler structure of quasi-constant

holomorphic sectional curvatures with functions
a + k2 > 0, a > 0,

a + k2 > 0, a < 0,

a + k2 < 0, a < 0,

respectively.

We describe the meridians of those rotational hypersurfaces, whose Kähler metrics are Bochner–Kähler (especially
of constant holomorphic sectional curvatures).
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6.1. Kähler structures on rotational hypersurfaces of type I

In [3] we studied the standard 2n-dimensional rotational hypersurfaces M in R2n+1
= Cn

× R having no
common points with the axis of revolution l = R. Any such hypersurface M is a one-parameter family of spheres
S2n−1(s), s ∈ I ⊂ R, considered as hyperspheres in Cn with corresponding centers on l and radii t (s) > 0, s being
the natural parameter for the meridian. A rotational hypersurface M satisfying the conditions

t (s) > 0, t ′(s) > 0; s ∈ I

is said to be a rotational hypersurface of type I.
In [3] we have shown that any rotational hypersurface M of type I carries a natural Kähler structure (g, J, ξ), which

has the following remarkable property.

Theorem 6.1 ([3]). Let M (dim M = 2n ≥ 4) be a rotational hypersurface of type I. Then the Kähler structure
(g, J, ξ) on M is of quasi-constant holomorphic sectional curvatures with functions

a ≥ 0, (a + k2 > 0).

The curvature tensor R of the metric g has the form

R = aπ + bΦ + cΨ ,

where

a =
4(1 − t ′)

t2 , b = 8
(

t ′ − 1

t2 −
t ′′

2t t ′

)
, c =

4(1 − t ′)

t2 +
5t ′′

2t t ′
+

t ′′2 − t ′t ′′′

2t ′3
. (6.1)

In this subsection we describe the rotational hypersurfaces of type I, whose Kähler structure is Bochner flat.
We recall that the Bochner curvature tensor B(R) of a Kähler manifold (M, g, J ) (dim M = 2n ≥ 4) with

curvature tensor R, Ricci tensor ρ and scalar curvature τ is given by

(B(R))αβ̄γ δ̄ = Rαβ̄γ δ̄ −
1

n + 2
(gαβ̄ργ δ̄ + gγ β̄ραδ̄ + gγ δ̄ραβ̄ + gαδ̄ργ β̄)

+
τ

2(n + 1)(n + 2)
(gαβ̄gγ δ̄ + gγ β̄gαδ̄) (6.2)

in local holomorphic coordinates.
The manifold (M, g, J ) is said to be Bochner flat (or the metric g is Bochner–Kähler) if B(R) = 0.

Lemma 6.2. A Kähler manifold whose curvature tensor is of the form

R = aπ + bΦ + cΨ , (6.3)

is Bochner flat if and only if c = 0.

Proof. Applying the Bochner operator (6.2) to the tensor (6.3) we find

B(R) = c

(
2

(n + 1)(n + 2)
π −

4
n + 2

Φ + Ψ
)

,

which gives the assertion. �

Any rotational hypersurface M of type I is geometrically determined by the equation t = t (s) (or equivalently
s = s(t)).

Proposition 6.3. Let M be a rotational hypersurface of type I. Then the Kähler structure (g, J ) is Bochner–Kähler if
and only if

s(t) =

∫
dt

c1t4 + c2t2 + 1
,

where c1 = const, c2 = const.
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Proof. Taking into account (6.1) we have

c = −
t

2t ′

(
t ′′

t t ′
+ 4

1 − t ′

t2

)′

.

According to Lemma 6.2 we have to solve the equation c = 0, i.e.

t ′′

t t ′
+ 4

1 − t ′

t2 = const = −2c2. (6.4)

The general solution of (6.4) is

s(t) =

∫
dt

c1t4 + c2t2 + 1

for some constant c1. �

We note that the case c1 = 0 gives the Kähler metrics of constant holomorphic sectional curvatures a = const > 0
described in [3].

6.2. Kähler structures on rotational hypersurfaces of type II

Let (Cn, g′, J0) = (R2n, g′, J0) be the complex space with the standard complex structure J0 and flat definite
metric g′. Further, let Oe be a coordinate system on R with the inner product determined by e2

= −1 and l = R be
the axis of revolution in the space Cn

×R. We denote the product metric in R2n
1 = Cn

×R by the same letter g′. Then
g′(e, e) = −1 and g′ is of signature (2n, 1).

We consider the class of rotational hypersurfaces having no common points with the axis of revolution l. Then any
such hypersurface M is a one-parameter family of spheres S2n−1(s), s ∈ I considered as hyperspheres in Cn with
corresponding centers q(s)e on l and radii t (s) > 0. If Z is the radius vector of any point p ∈ M with respect to the
origin O , then the unit normal n of the parallel S2n−1(s) at the point p is

n =
Z − q(s)e

t (s)
.

Hence

Z = t (s)n + q(s)e (6.5)

and the meridian γ of M is

γ : z(s) = t (s)n + q(s)e (6.6)

in the plane One (n-fixed).
Because of (6.6) and (6.5) the tangent vector field ξ̄ to γ is

ξ̄ =
dz
ds

= t ′n + q ′e =
∂Z
∂s

. (6.7)

We consider rotational hypersurfaces whose meridian γ has a space-like tangent at any point and assume that s is
a natural parameter for γ , i.e.

g′

(
dz
ds

,
dz
ds

)
= t ′2 − q ′2

= 1.

Since the normal to M lies in the plane One, we choose the time-like unit vector field N normal to M by the
condition that the couples (n, e) and (ξ̄ , N ) have the same orientation. Then taking into account (6.7), we have

N = q ′n + t ′e.

Definition 6.4. A rotational hypersurface M in R2n
1 = Cn

×R, which has no common points with the axis of revolution
l, is said to be of type II if its normals are time-like.
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Let ∇
′ be the flat Levi-Civita connection of the metric g′ in R2n

1 = Cn
× R. We denote the induced definite metric

on M by ḡ. Let η̄ be the 1-form corresponding to the space-like unit vector field ξ̄ with respect to the metric ḡ,
i.e. η̄(X) = ḡ(ξ̄ , X), X ∈ XM . If ∇̄ is the Levi-Civita connection on (M, ḡ), we have:

∇
′

X Y = ∇̄X Y +

(√
t ′2 − 1

t
ḡ(X, Y ) +

1 − t ′2 + t t ′′

t
√

t ′2 − 1
η̄(X)η̄(Y )

)
N , X, Y ∈ XM;

∇̄ξ̄ ξ̄ = 0; ∇̄x ξ̄ =
t ′

t
x, ḡ(x, ξ̄ ) = 0, x ∈ XM.

(6.8)

Then the curvature tensor R̄ of the rotational hypersurface (M, ḡ) of type II has the form:

R̄ = −
t ′2 − 1

t2 π̄ −
1 − t ′2 + t t ′′

t2 Φ̄. (6.9)

This equality implies that the rotational hypersurface (M, ḡ) of type II is conformally flat. More precisely, (M, ḡ, ξ̄ )

is a subprojective Riemannian manifold with horizontal sectional curvatures −
t ′2−1

t2 ≤ 0 (cf. [2]).

As in [3], we consider the almost contact Riemannian structure (ϕ, ˜̄ξ, ˜̄η, ḡ) on the parallels S2n−1(s), s ∈ I of the
rotational hypersurface M and obtain that any parallel is 1

t -Sasakian.
This allows us to introduce the almost complex structure J on (M, ḡ) subordinated to the orientation ξ̄ of the

meridians by

J|D := J0, J ξ̄ :=
˜̄ξ, J ˜̄ξ := −ξ̄ . (6.10)

Similarly to the definite case [3] we have

Proposition 6.5. Let (M, ḡ) be a rotational hypersurface of type II in R2n
1 = Cn

× R whose meridians are oriented
with the space-like unit vector field ξ̄ . If J is the almost complex structure (6.10) associated with ξ̄ , then the covariant
derivative of J satisfies the identity

(∇̄X J )Y =
t ′ − 1

t

(
ḡ(X, Y ) ˜̄ξ − ˜̄η(Y )X − η̄(Y )J X + ḡ(J X, Y )ξ̄

)
(6.11)

for all vector fields X, Y ∈ XM.

The identity (6.11) shows that (M, ḡ, J ) is a locally conformal Kähler manifold in all dimensions 2n ≥ 4 with Lee
form 1−t ′

t η̄.
Our aim in this subsection is to define a nontrivial Kähler metric on (M, ḡ, J ), which is naturally determined by

its geometric structures.
If (M, ḡ, J ) is a rotational hypersurface of type II, then t ′2 ≥ 1. Therefore we can always choose the orientation ξ̄

of the meridians so that t ′ ≥ 1.
In what follows we assume that

t (s) > 0, t ′(s) ≥ 1; s ∈ I. (6.12)

Under the conditions (6.12) we construct the structure (g, ξ):

g = ḡ + (t ′ − 1)(η̄ ⊗ η̄ + ˜̄η ⊗ ˜̄η), ξ =
1

√
t ′

ξ̄ , η =
√

t ′ η̄. (6.13)

Taking into account (6.11) we obtain that the Kähler form of the metric (6.13) is closed, i.e. g is a Kähler metric.
More precisely, we have

Theorem 6.6. Let (M, ḡ, J, ξ̄ ) (2n ≥ 4) be a rotational hypersurface of type II and assume that (6.12) holds good.
Then the Kähler metric g, given by (6.13), is of quasi-constant holomorphic sectional curvatures with functions

a ≤ 0, a + k2 > 0.
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Proof. Calculating the relation between the connections of the metrics in (6.13) in view of (6.9) we find the curvature
tensor R of the Kähler metric g:

R = aπ + bΦ + cΨ ,

where

a =
4(1 − t ′)

t2 , b = 8
(

t ′ − 1

t2 −
t ′′

2t t ′

)
, c =

4(1 − t ′)

t2 +
5t ′′

2t t ′
+

t ′′2 − t ′t ′′′

2t ′3
. (6.14)

Applying Proposition 2.3 [3] we obtain that (M, g, J, ξ) is of quasi-constant holomorphic sectional curvatures.
Since t ′ ≥ 1, then we have a ≤ 0.
From (6.8) and the relation between the connections of g and ḡ it follows that

∇xξ =

√
t ′

t
x −

t ′′

2t ′
√

t ′
η(J x)Jξ

for all x ∈ XM , g(ξ, x) = 0. According to (2.1) the function k of the structure (g, J, ξ) is k = 2
√

t ′
t . Taking into

account (6.14) we find

a + k2
=

4

t2 > 0. �

As a consequence of Theorem 6.6 we can find the rotational hypersurfaces (M, ḡ, J ) of type II whose Kähler
metric (6.13) is of constant holomorphic sectional curvatures.

Let b = 0 in (6.14). Then Corollary 3.6 [3] implies that c = 0 and the metric g is of constant holomorphic sectional
curvatures a = const ≤ 0.

Solving the equation

b = 8
(

t ′ − 1

t2 −
t ′′

2t t ′

)
= 0,

we obtain the meridian in the form q = q(t).
Namely, we have

Proposition 6.7. Any rotational hypersurface (M, ḡ, J ) of type II, whose Kähler metric (6.13) is of constant
holomorphic sectional curvatures a = const < 0, is generated by a meridian of the type

γ : q = ±
1

√
−a

(√
8 − at2 + ln

√
8 − at2 − 2

√
8 − at2 + 2

)
+ q0, t > 0

in the hyperbolic plane One.

Similarly to Proposition 6.3 we obtain the following statement.

Proposition 6.8. Let (M, ḡ, J ) be a rotational hypersurface of type II generated by the meridian

γ : z(s) = t (s)n + q(s)e, s ∈ I

in the hyperbolic plane One. Then the metric g given by (6.13) is Bochner–Kähler if and only if

s(t) =

∫
dt

c1t4 + c2t2 + 1
,

where c1 = const, c2 = const.

We note that the case c1 = 0 is described in Proposition 6.7.
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6.3. Kähler structures on rotational hypersurfaces of type III

Let (Cn, h′, J0) = (R2(n−1)
2 , h′, J0) be the Kähler–Lorentz space with the standard complex structure J0 and flat

indefinite metric h′ of signature (2(n − 1), 2). Further, let Oe be a coordinate system on R with the inner product
determined by e2

= +1 and l = R be the axis of revolution in the space R2(n−1)
2 × R = Cn

× R. We denote the
product metric in R2n−1

2 = Cn
× R by the same letter h′. Then h′(e, e) = +1 and h′ is of signature (2(n − 1), 2).

We consider rotational hypersurfaces M with parallels H2(n−1)
1 , which are hyperspheres with respect to the metric

h′ in the time-like domain Tn−1
1 ⊂ Cn . Then M is a one-parameter family of spheres H2(n−1)

1 (s), s ∈ I with
corresponding centers q(s)e on l and radii t (s) > 0. If Z is the radius vector of any point p ∈ M with respect to the
origin O , then the unit normal n of the parallel H2(n−1)

1 (s) at the point p is

n =
Z − q(s)e

t (s)
, h′(n, n) = −1.

Hence

Z = t (s)n + q(s)e (6.15)

and the meridian γ of M is

γ : z(s) = t (s)n + q(s)e (6.16)

in the plane One (n- fixed).
Because of (6.16) and (6.15) the tangent vector field ξ̄ to γ is

ξ̄ =
dz
ds

= t ′n + q ′e =
∂Z
∂s

. (6.17)

We consider rotational hypersurfaces whose meridian γ has a time-like tangent at any point and assume that s is a
natural parameter for γ , i.e.

h′

(
dz
ds

,
dz
ds

)
= −t ′2 + q ′2

= −1.

Since the normal to M lies in the plane One, we choose the space-like unit vector field N normal to M by the
condition that the couples (n, e) and (ξ̄ , N ) have the same orientation. Then taking into account (6.17), we have

N = q ′n + t ′e.

Definition 6.9. A rotational hypersurface M in R2n−1
2 = Cn

× R, which has no common points with the axis of
revolution l = R, is said to be of type III if its normals are space-like.

Let ∇
′ be the flat Levi-Civita connection of the metric h′ in R2n−1

2 = Cn
×R. We denote by h̄ the induced indefinite

metric on M of signature (2(n − 1), 2). Let η̄ be the 1-form corresponding to the unit time-like vector field ξ̄ with
respect to the metric h̄, i.e. η̄(X) = h̄(ξ̄ , X), X ∈ XM . If ∇̄ is the Levi-Civita connection on (M, h̄), we have:

∇
′

X Y = ∇̄X Y −

(√
t ′2 − 1

t
h̄(X, Y ) +

−1 + t ′2 + t t ′′

t
√

t ′2 − 1
η̄(X)η̄(Y )

)
N , X, Y ∈ XM;

∇̄ξ̄ ξ̄ = 0; ∇̄x ξ̄ =
t ′

t
x, h̄(x, ξ̄ ) = 0, x ∈ XM.

(6.18)

Then the curvature tensor R̄ of the rotational hypersurface (M, h̄) of type III has the form:

R̄ =
t ′2 − 1

t2 π̄ +
−1 + t ′2 + t t ′′

t2 Φ̄, (6.19)
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where π̄ and Φ̄ are the tensors

π̄(X, Y )Z = h̄(Y, Z)X − h̄(X, Z)Y,

Φ̄(X, Y )Z = h̄(Y, Z)η̄(X)ξ̄ − h̄(X, Z)η̄(Y )ξ̄ + η̄(Y )η̄(Z)X − η̄(X)η̄(Z)Y, X, Y, Z ∈ XM.

The equality (6.19) implies that the rotational hypersurface (M, h̄) of type III is conformally flat.

Now we consider the almost contact Riemannian structure (ϕ, ˜̄ξ, ˜̄η, h̄) on the parallel H2(n−1)
1 (s), s ∈ I of the

rotational hypersurface (M, h̄) which arises in a similar way as in the definite case (cf. [8,9]):

˜̄ξ := J0n, ˜̄η(x) := h̄( ˜̄ξ, x);

ϕx := J0x − ˜̄η(x)n, x ∈ XH2(n−1)
1 (s).

(6.20)

It is clear that h̄( ˜̄ξ, ˜̄ξ) = −1. The relations (6.20) imply that

ϕ ξ = 0; ϕ2x = −x − ˜̄η(x) ˜̄ξ ;

h̄(ϕx, ϕy) = h̄(x, y) + ˜̄η(x) ˜̄η(y), x, y ∈ XH2(n−1)
1 (s).

Let us denote by D the induced Levi-Civita connection of the metric h̄ on H2(n−1)
1 (s) as a submanifold of

Tn−1
1 (s) ⊂ Cn . Then the Weingarten and Gauss formulas of the imbedding H2(n−1)

1 (s) ⊂ Cn are:

∇
′
x n =

1
t

x;

∇
′
x y = Dx y +

1
t

h̄(x, y)n, x, y ∈ XH2(n−1)
1 (s).

(6.21)

From (6.20) and (6.21) we obtain consequently

∇
′
x
˜̄ξ =

1
t
(ϕx + ˜̄η(x)n);

Dx
˜̄ξ =

1
t
ϕx, x ∈ XH2(n−1)

1 (s).
(6.22)

Let Tp M be the tangent space to M at any point p ∈ M . Then the vector fields ξ̄ and ˜̄ξ defined by (6.20) determine

a distribution D such that D⊥
= span{ξ̄ , ˜̄ξ}. The distribution D is space-like, while the distribution D⊥ is time-like.

We define an almost complex structure J on (M, h̄) subordinated to the orientation ξ̄ of the meridians γ as follows:

J|D := J0, J ξ̄ :=
˜̄ξ, J ˜̄ξ := −ξ̄ . (6.23)

Similarly to Proposition 6.5 we have

Proposition 6.10. Let (M, h̄) be a rotational hypersurface of type III in R2n−1
2 = Cn

× R whose meridians γ are
oriented with the time-like unit vector field ξ̄ . If J is the almost complex structure (6.23) associated with ξ̄ , then the
covariant derivative of J satisfies the identity

(∇̄X J )Y =
1 − t ′

t

(
h̄(X, Y ) ˜̄ξ − ˜̄η(Y )X − η̄(Y )J X + h̄(J X, Y )ξ̄

)
(6.24)

for all vector fields X, Y ∈ XM.

Proof. We calculate the components of (∇̄X J )Y , X, Y ∈ XM :

(∇̄x J )y =
1 − t ′

t
(h̄(x, y) ˜̄ξ + h̄(ϕx, y)ξ̄ − ˜̄η(y)n),

(∇̄x J )ξ̄ =
1 − t ′

t
ϕx, x, y ∈ XM, h̄(ξ̄ , x) = h̄(ξ̄ , y) = 0;
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(∇̄ξ̄ J )x0 = 0, x0 ∈ XM, h̄(x0, ξ̄ ) = h̄(x0,
˜̄ξ) = 0;

(∇̄ξ̄ J ) ˜̄ξ = 0, (∇̄ξ̄ J )ξ̄ = 0.

These equalities imply the assertion. �

The identity (6.24) shows that (M, h̄, J ) is a locally conformal Kähler manifold in all dimensions 2n ≥ 4 with Lee
form 1−t ′

t η̄. This implies that (M, h̄, J ) carries a conformal Kähler metric of signature (2(n − 1), 2) which is flat.
Our aim in this subsection is to define a nontrivial definite Kähler metric g on (M, h̄, J ), which is naturally

determined by its geometric structures.
If (M, h̄, J ) is a rotational hypersurface of type III, then t ′2 ≥ 1. Therefore we can always choose the orientation

ξ̄ of the meridians so that t ′ ≤ −1.
In what follows we assume that

t (s) > 0, t ′(s) ≤ −1; s ∈ I. (6.25)

Under the conditions (6.25) we construct the structure (g, ξ):

g = h̄ + (1 − t ′)(η̄ ⊗ η̄ + ˜̄η ⊗ ˜̄η), ξ =
1

√
−t ′

ξ̄ , η = −
√

−t ′ η̄. (6.26)

Taking into account the defining condition (6.26) and (6.25), we obtain that g is a definite metric and ξ is a unit
vector field. Because of (6.26) and (6.24) it follows that g is a Kähler metric on M .

More precisely, we have

Theorem 6.11. Let (M, h̄, J, ξ̄ ) (2n ≥ 4) be a rotational hypersurface of type III and assume that (6.25) holds good.
Then the Kähler metric g, given by (6.26), is of quasi-constant holomorphic sectional curvatures with functions

a < 0, a + k2 < 0.

Proof. Let ∇ be the Levi-Civita connection of the metric (6.26). We calculate the relation between ∇̄ and ∇:

∇̄X Y = ∇X Y −
t ′′

2t ′
√

−t ′
{[η(X)η(Y ) − η(J X)η(JY )]ξ − [η(X)η(JY ) + η(J X)η(Y )]Jξ}

−
1 − t ′

t
√

−t ′
{η(J X)JY + η(JY )J X − [η(X)η(JY ) + η(J X)η(Y )]Jξ

− t ′[g(X, Y ) − η(J X)η(JY ) − η(X)η(Y )]ξ − 2η(J X)η(JY )ξ}

for all X, Y ∈ XM .
Taking into account (6.18) we find

∇Xξ =
t ′

t
√

−t ′
(X − η(X)ξ) −

t ′′

2t ′
√

−t ′
η(J X)Jξ, X ∈ XM. (6.27)

Then we find the curvature tensor R of the Kähler metric g:

R = aπ + bΦ + cΨ ,

where

a =
4(t ′ − 1)

t2 , b = −8
(

t ′ − 1

t2 −
t ′′

2t t ′

)
, c =

4(t ′ − 1)

t2 − 2
t ′′

t t ′
−

t ′′2

2t t ′3

(
t t ′

t ′′

)′

. (6.28)

Applying Proposition 2.3 [3] we obtain that (M, g, J, ξ) is of quasi-constant holomorphic sectional curvatures.
Since t ′ ≤ −1, then we have a < 0.
From (6.27) it follows that the function k of the structure (g, J, ξ) is k =

2t ′

t
√

−t ′
. Taking into account (6.28), we

find

a + k2
= −

4

t2 < 0. �
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As a consequence of Theorem 6.11 we can find the rotational hypersurfaces M of type III, whose Kähler metric
(6.26) is of constant holomorphic sectional curvatures.

Let b = 0 in (6.28). Then Corollary 3.6 [3] implies that c = 0 and the metric g is of constant holomorphic sectional
curvatures a = const < 0.

Solving the equation

b = −8
(

t ′ − 1

t2 −
t ′′

2t t ′

)
= 0,

we obtain the meridian in the form q = q(t).
Namely, we have

Proposition 6.12. Any rotational hypersurface (M, h̄, J ) of type III, whose Kähler metric (6.28) is of constant
holomorphic sectional curvatures a = const < 0, is generated by a meridian of the type

γ : q =
1

−a

(√
a(8 + at2) − 2

√
−a arctan

1
2

√
−(8 + at2)

)
, t >

2
√

2
√

−a

in the hyperbolic plane One.

Similarly to Propositions 6.3 and 6.8 we obtain the following statement.

Proposition 6.13. Let (M, h̄, J ) be a rotational hypersurface of type III generated by the meridian

γ : z(s) = t (s)n + q(s)e, s ∈ I

in the hyperbolic plane One. Then the metric g given by (6.28) is Bochner–Kähler if and only if

s(t) =

∫
dt

c1t4 + c2t2 + 1
,

where c1 = const, c2 = const.

We note that the case c1 = 0 is described in Proposition 6.12.
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